Master of Computer Applications
(MCA)

Object Oriented Programming

with C++ and JAVA Lab
(DMCACO107P24)

Self-Learning Material
(SEM 1)

g‘umwm
Jaipur National University
Centre for Distance and Online Education

Established by Government of Rajasthan
Approved by UGC under Sec 2(f) of UGC ACT 1956
&

NAAC A+ Accredited

-
(g

,,.,
g N
= =
= 7,

P
W

»
=

Jaipur National University

Course Code: DMCACO107P24
Object Oriented Programming with

C++and JAVA Lab

TABLE OF CONTENTS
Course Introduction [
Experiment 1 1
Implementing a Class and Object
Experiment 2 1
Constructors and Destructors
Experiment 3 5
Implementing Inheritance
Experiment 4
Function Overloading 2
Experiment 5)
Operator Overloading
Experiment 6 3
Inheritance with Function Overriding
Experiment 7 3
Implementing a Copy Constructor
Experiment 8 3
Implementing Dynamic Memory Allocation
Experiment 9 4
Friend Function
Experiment 10 4
Template Class
Experiment 11
Implementing a Linked List 5
Experiment 12 5
Implementing a Stack Using Class
Experiment 13 5
Implementing a Queue Using Class
Experiment 14 5

Implementing Polymorphism

Experiment 15

Implementing Abstract Classes 0
Experiment 16

Implementing a Template Function 6
Experiment 17 7
Exception Handling

Experiment 18 .
Implementing Copy Constructor and Assignment Operator

Experiment 19 8
Implementing Static Members

Experiment 20 8
File Handling

Experiment 21 8
Algorithm

Experiment 22 10
Algorithm

Experiment 23 11
Algorithm

Experiment 24 12
Algorithm

Experiment 25

Algorithm 13
Experiment 26 14
Algorithm

Experiment 27 14
Algorithm

Experiment 28 18

Algorithm

EXPERT COMMITTEE

Prof. Sunil Gupta
(Department of Computer and Systems Sciences, JNU Jaipur)

Dr. Deepak Shekhawat
(Department of Computer and Systems Sciences, JNU Jaipur)

Dr. Shalini Rajawat
(Department of Computer and Systems Sciences, JNU Jaipur)

COURSE COORDINATOR

Ms. Heena Shrimali
(Department of Computer and Systems Sciences, JNU Jaipur)

UNIT PREPARATION

Unit Writer(s) Assisting &
Proofreading

Ms. Heena Shrimal Mr. Hitendra Agarwal

(Department of (Department of

Computer and Computer and

Systems Sciences, Systems Sciences,

JNU Jaipur) JNU Jaipur)

Unit Editor

Mr. Shish Dubey
(Department of
Computer and
Systems Sciences,
JNU Jaipur)

Secretarial Assistance

Mr. Mukesh Sharma

COURSE INTRODUCTION

""Object-oriented programming is an exceptionally bad idea which could only have originated
in California.”
- Edsger W. Dijkstra

The course starts with an overview of the object-oriented paradigm and its elements, discussing
the advantages and disadvantages of the OO methodology. Students will delve into C++
fundamentals, including data types, operators, expressions, and control flow. Essential topics
covered include arrays, strings, pointers, and functions, along with the creation and management
of classes and objects. The course also addresses constructors and destructors, operator
overloading, inheritance, virtual functions, and polymorphism to provide a comprehensive
understanding of OOP principles in C++. File handling in C++ is another significant aspect of
this course. Students will learn about console streams and console stream classes, including
formatted and unformatted console 1/0O operations and manipulators. The course covers file
streams, classes, file modes, file pointers, and file manipulations, as well as file input and output
operations. Additionally, students will learn about exception handling in C++, enabling them to
write robust and error-resistant programs.

The course also offers an introduction to Java, a versatile and widely-used programming
language. Students will learn about Java's data types, variables, and arrays, as well as operators
and control statements. The course covers the creation and management of classes, objects, and
methods, along with key OOP concepts such as inheritance, packages, and interfaces. Exception
handling, multithreaded programming, strings, and input/output operations are also discussed,
providing students with the skills needed to develop efficient Java applications.

Multithreading is a powerful concept that allows for the concurrent execution of code. This
course introduces students to the differences between non-threaded and threaded applications,
focusing on the creation and management of threads. Students will learn to implement the
Runnable interface, gaining a practical understanding of multithreading and its applications in
real-world scenarios.

Course Outcomes:

At the completion of the course, a student will be able to:

1.
2.

Acquire profound knowledge of object oriented programming.

Demonstrate the difference between the solutions offered by traditional imperative
problem solving method and object-oriented method by class inheritance, data
encapsulation, and polymorphism as fundamental building blocks to generate reusable
code.

Understand and implement error handling and file handling routines.

Explain the Internet Programming, using Java Applets.

Create and design a full set of Ul widgets and other components, including windows,
menus, buttons, checkboxes, text fields, scrollbars and scrolling lists, using Abstract
Windowing Toolkit (AWT).

Describe to access database through Java programs, using Java Database Connectivity
(JDBC)

Develop Mini Projects using constructs of OOPs and Java.

Acknowledgements:

The content we have utilized is solely educational in nature. The copyright proprietors of the

materials reproduced in this book have been tracked down as much as possible. The editors

apologize for any violation that may have happened, and they will be happy to rectify any such

material in later versions of this book.

OOPs Using C++ Lab

Assignment 1: Implementing a Class and Object

Program Statement: Write a C++ program to make a class Rectangle with attributes length
and width. Include member functions to:

Set the dimensions of the rectangle.

Compute and return the area of the rectangle.

w e

Calculate and go back the perimeter of the rectangle.
4. Display the dimensions, area, and perimeter.

Solution Description: This program will help students understand how to define a class with
private attributes and public member functions. The Rectangle class will encapsulate the
properties of a rectangle and provide methods to manipulate and access these properties. The
program will include a constructor to initialize the rectangle's dimensions, methods to
calculate the area and perimeter, and a display function to output the rectangle's details. This
assignment reinforces concepts of encapsulation, data hiding, and basic object manipulation
in C++.

Assignment 2: Constructors and Destructors
Program Statement: Create a class Complex to represent complex numbers. Implement:

1. Adefault constructor to initialize the real and imaginary parts to zero.

2. A “parameterized constructor” to initialize the real and imaginary parts to given
values.

3. A “destructor” to display a message when an object is destroyed.
4. A “member function” to display the complex number in the form a + bi.

Solution Description: This assignment emphasizes the use of constructors and destructors in
a class. The Complex class will have attributes for the real and imaginary parts. Constructors
will initialize these attributes, either to default values or to user-provided values. The
destructor will be used to demonstrate when an object goes out of scope and is destroyed. The
display function will format and print the complex number. This task helps in understanding
object lifecycle management and resource cleanup in C++.

Assignment 3: Implementing Inheritance

Program Statement: Create a “base class” Shape with a pure “virtual function” area().
Derive two classes Circle and Square from Shape. Implement:

1. The constructor for each derived class.
2. The area() function to calculate and return the area for each shape.
3. Afunction to display the area.

Solution Description: This assignment introduces the concept of inheritance and
polymorphism. The Shape class serves as an “abstract base class” with a pure “virtual
function” area(). The “derived classes” Circle and Square implement the area() function to
calculate the area specific to each shape. The constructors initialize the radius and side length,
respectively. By using base class pointers to call the area() function, students will understand
dynamic binding and polymorphism in C++.

Assignment 4: Function Overloading

Program Statement: Write a C++ program to demonstrate function overloading by creating
a class Math with multiple add() functions to handle:

1. Addition of two integers.
2. Addition of two floating-point numbers.
3. Addition of three integers.

Solution Description: “Function overloading” allows multiple functions with the same name
but different parameters. The Math class will have overloaded add() functions to handle
different types and numbers of arguments. This program will show how the same function
name can be used to do different operations based on the input parameters. This assignment
helps in understanding the concept of function overloading and its applications in C++.

Assignment 5: Operator Overloading

Program Statement: Create a class Complex to represent complex numbers. Overload the +
operator to add two complex numbers. The program should:

1. Include a constructor to initialize the real and imaginary parts.
2. Overload the + operator.
3. Display the result of the addition.

Solution Description: “Operator overloading” allow operators to be redefined for user-
defined types. The Complex class will include a constructor for initialization and an

overloaded + operator to add two Complex objects. The program will create Complex
objects, perform the addition using the overloaded operator, and display the result. This
assignment covers operator overloading and custom behavior for operators, allowing students
to extend the functionality of existing operators to work with user-defined types.

Assignment 6: Inheritance with Function Overriding

Program Statement: Create a “Base class” Animal with a “Virtual function” sound().
Derive two classes Dog and Cat from Animal and override the sound() function in each
derived class. The program should:

1. Create objects of Dog and Cat.
2. Call the sound() function by a pointer to the “Base class”.

Solution Description: “Function overriding” allows a derived class to provide a definite
implementation of a function already defined in its base class. The Animal class will have a
virtual sound() function, which will be overridden in the Dog and Cat classes to provide
specific sounds. By using base class pointers to call the sound() function, the program will
demonstrate polymorphism. This assignment helps in understanding inheritance, function
overriding, and runtime polymorphism in C++.

Assignment 7: Implementing a Copy Constructor

Program Statement: Create a “class” Book with attributes title, author, and price.
Implement:

1. A “parameterized constructor” to initialize the attributes.
2. Acopy constructor to create a copy of a Book object.
3. Afunction to display the book details.

Solution Description: A copy constructor is used to create a new object as a copy of an
existing object. The Book class will have attributes for the title, author, and price, and a
parameterized constructor to initialize them. The copy constructor will create a new Book
object with the same attribute values as an existing object. The display function will print the
details of the book. This assignment helps in understanding deep copying and the role of copy
constructors in C++.

Assignment 8: Implementing Dynamic Memory Allocation
Program Statement: Create a class Student with attributes name and marks. Implement:

1. Aconstructor to dynamically allocate memory for the name.

3

2. Adestructor to deallocate the memory.
3. Afunction to display the student details.

Solution Description: Dynamic memory allocation involves allocating memory at runtime
using pointers. The Student class will have a constructor that allocates memory for the name
attribute and a destructor that deallocates this memory to prevent memory leaks. The display
function will output the student's details. This assignment helps in understanding dynamic
memory management, constructors, destructors, and the importance of resource management
in C++.

Assignment 9: Friend Function

Program Statement: Make a class Box with private attributes length, width, and height.
Implement:

1. A “constructor” to initialize the attributes.
2. A “friend function” to calculate and return the volume of the box.
3. Afunction to display the dimensions and volume of the box.

Solution Description: A “Friend function” is a non-member function that has access to the
private and protected member of a class. The Box class will have a constructor to initialize its
dimensions and a friend function to calculate the volume. The display function will print the
box's dimensions and volume. This assignment helps in understanding friend functions and
their use cases in C++,

Assignment 10: Template Class

Program Statement: Write a template class Array that can store elements of any data type.
Implement:

1. Aconstructor to initialize the array with a given size.
2. Afunction to add elements to the array.
3. Afunction to show the elements of the array.

Solution Description: Templates allow classes and functions to operate with generic types.
The Array template class will support any data type, provide flexibility and reusability. The
constructor will initialize the array with a specified size, the function to add elements will
store values in the array, and the display function will print all elements. This assignment
helps in understanding templates and their benefits in creating generic and reusable code in
C++.

Assignment 11: Implementing a Linked List

Program Statement: Create a class Linked List to represent a “singly linked list” of
integers. Implement:

1. Aconstructor to initialize an empty list.

2. Afunction to add a node at the end.

3. Afunction to cross out a node from the beginning.
4. A function to show the elements of the list.

Solution Description: The Linked List class will encapsulate the properties of a singly
linked list. The class will have a nested Node structure by an integer data field and a pointer
to the next node. The constructor will initialize an empty list. The add Node function will
add nodes to the end of the list, while the deleteNode function will remove the node at the
beginning. The display function will traverse and print the list elements. This assignment
reinforces concepts of dynamic memory allocation and pointer manipulation in C++.

Assignment 12: Implementing a Stack Using Class
Program Statement: Create a class Stack to represent a stack of integers. Implement:

1. Aconstructor to initialize an empty stack.

2. Afunction to push an element on the stack.
3. Afunction to pop an element from the stack.
4. Afunction to show the elements of the stack.

Solution Description: The Stack class will use an array or a linked list to store stack
elements. The constructor will initialize the stack, and the push function will insert elements
to the top. The pop function will remove the top element, and the “display function” will
print all elements from the top to the bottom. This assignment helps in understanding stack
operations and their implementation in C++.

Assignment 13: Implementing a Queue Using Class
Program Statement: Create a class Queue to represent a queue of integers. Implement:
1. Aconstructor to initialize an empty queue.
2. Afunction to enqueue an element on the end.
3. Afunction towards dequeue an element from the front.
4

. Afunction to show the elements of the queue.

Solution Description: The Queue class will use an array or a linked list to manage queue
elements. The constructor will initialize the queue, and the enqueue function will add
elements to the end. The dequeue function will remove elements from the front, and the
display function will print all elements from the front to the end. This assignment covers the
concept of queue operations and their implementation in C++.

Assignment 14: Implementing Polymorphism

Program Statement: Create a “Base class” Vehicle with a “virtual function” display().
Derive two classes Car as well as Bike from Vehicle. Override the display() function in each
derived class. The program should:

1. Create objects of Car and Bike.
2. Call the display() function using a pointer towards the base class.

Solution Description: Polymorphism allows methods to be used interchangeably based on
the object type at runtime. The Vehicle class will have a virtual display() function, which will
be overridden in the Car and Bike classes to provide specific implementations. The program
will use base class pointers to demonstrate polymorphism by calling the display() function on
Car and Bike objects. This assignment helps understand runtime polymorphism and dynamic
binding in C++.

Assignment 15: Implementing Abstract Classes

Program Statement: Create an abstract “Base class” Employee with a pure virtual function
calculateSalary(). Derive 2 classes FullTimeEmployee and PartTimeEmployee from
Employee. Implement:

1. The calculateSalary() function in each derived class.
2. Afunction to display the salary details.

Solution Description: Abstract classes cannot be instantiated and are used to define
interfaces for derived classes. The Employee class will have a pure virtual calculateSalary()
function, making it abstract. The FullTimeEmployee and PartTimeEmployee classes will
provide concrete implementations of the calculateSalary() function. The display function
will print the salary details. This assignment helps understand abstract classes, pure virtual
functions, and their role in defining interfaces in C++.

Assignment 16: Implementing a Template Function

Program Statement: Create a template “Function” findMax to find the supreme of two
elements. The program should:

1. Use the findMax function with different data types (int, float, char).
2. Display the results.

Solution Description: Template functions allow a function to operate with generic types. The
findMax function will compare two elements of any data type and return the maximum. The
program will demonstrate the function with different data types, showcasing its versatility
and reusability. This assignment helps understand the concept of templates and their benefits
in creating generic functions in C++.

Assignment 17: Exception Handling

Program Statement: Create a C++ program to demonstrate exception handling. The
program should:

1. Implement a function that performs division of two numbers.
2. Throw an exception if the divisor is zero.
3. Catch the exception and display an appropriate error message.

Solution Description: Exception handling allows a program to handle runtime errors
gracefully. The division function will throw an exception if an attempt is made to divide by
zero. The program will catch the exception and display an error message, preventing the
program from crashing. This assignment helps in understanding the try, catch, and throw
mechanisms in C++ for robust error handling.

Assignment 18: Implementing Copy Constructor and Assignment Operator
Program Statement: Create a class String to represent a dynamic string. Implement:

1. Aparameterized constructor to initialize the string.

2. A copy constructor to create a copy of a String object.

3. An overloaded assignment operator to assign one String object to another.
4. Afunction to display the string.

Solution Description: The String class will manage a dynamically allocated character array.
The copy constructor will ensure a deep copy of the string, and the assignment operator will
handle assignment between objects, preventing memory leaks. The display function will print
the string. This assignment covers dynamic memory management, copy constructors, and
assignment operators in C++.

Assignment 19: Implementing Static Members

Program Statement: Create a class Counter with a static data member to keep pathway of
the number of objects created. Implement:

1. Aconstructor to increment the counter.
2. Astatic member function to display the count of objects created.

Solution Description: Static members are joint among all objects of a class. The Counter
class will have a static data member to count the number of objects. The constructor will
increment this counter, and the static member function will display the count. This
assignment helps in understanding static data members and functions, and their shared nature
across all instances of a class in C++.

Assignment 20: File Handling

Program Statement: Create a class File Handler to perform basic file operations.
Implement:

1. Afunction to write data to a file.
2. Afunction to read data from the file and display it.

Solution Description: File handling allows programs to read from and write to files. The
FileHandler class will use file streams to perform these operations. The write function will
output data to a file, and the read function will input data from the file and display it. This
assignment helps in understanding file 1/0 operations and their implementation using file
streams in C++.

Assignment 21:
Object ;: Write a java program to find the given single digit number using switch case.

ALGORITHM:
Start the program.
Read a string with inputstreamR eader(System.in).
convert the string into Integer. parselnt(stdin.readLine());
Byusing switch case (multi way decision statement) when a match is
found. that case is executed.
. Default it is a break statement exit the switch statement.
Stop the program

Fd =

N

]

PROGRAM:

import java.io.®:
class digit

{

public static void main{5tring 5[]) throws IOException

{
intn;
DatalnputStraam stdin=nsew Datalnputitream{Svstam in);
Svstem. out.println{"Entar Anv positive single digit numbear :");
n=Intager parselnt{stdin. readlinal));

Swritch{n)

i

casa{:
Swstam. out. printlnf" Zaro™);
braal;

casa 1:
Swstam. out. println{" Ona");
braak;

casa 2:
Swstem. out.println{" Two™);
braak;

casa 3:
Swstem. out. println{" Thr=a");
braak;

casa4:
Svstem. out.println{"Four");
braak;

casa 3:
Swstem. out.println{"Fiva"};
brzak;

casa 6

Swstem. out.println{" Six");

braalk;

casa :
Swstem.out.println{" Seven");
braak;

casa 8:
Swstem. out.println{"Eight");
braak;

casa 9
Swstem. out.println{"Mina");
braak;

dafault:
Svstem . out.println{" Tmralid Numbar™);
braak;

OUTPUT:

Enter anv positive singls digit number: &
Six

Enter any positive singla digit number: 5
Fiva

Assignment 22:

Object :- Write a java program to find the given factorial numbers.

ALGORITHM:

Start the program. Import the packages.

Read a string with mputstreamR eader(System.in).
convert the string into Integer.parselnt(stdin.readLine());
Byusing for loop rotating the integer value.

Repeat enter the value until end of loop.

End ofclass and main method.
stop the program

-

h 4 L

o

PROGRAM:
import javaio.®; /fimporting io package
import java lang *: /fimporting lang package
class Factorial

{
public static void main(String args[]) throws [OException

i
int i.n.f=1;
System out println("Enter the numbert vou want to calculate the factorial™);
BufferedReader stdin=new BufferedR eader(new InputStreamPE eader{Svstem.in));
n=Integer parselnt(stdin readLine());
for(i=1li==nit++)
i
f=*;
h
System out println("The factordal of "+n+"1is "+ f);
t //End of main
t //End of class Factorial

//End of class Factorial

OUTPUT:
Enter the number for which vou want the factorial 3
The factorial of 315 6

10

Assignment 23:

Object: To check whether the first numberis a multiple of second number.

ATL.GORITHM:

1. Start the program, import the packages.

2. Create a class and variables with data types.

3. Read a string with inputstreamR eader(System.in).

4. convert the string into Integer.parselnt(stdin.readLine());

5. Byusing if...else loop rotating the string.

6. Printthe concatenation of arrays.

Stop the program

PROGRANM:
import java.io.®: /Importing io package
class Multiple
{

public static void main(String args[]) throws IOException

i
int mn;

BufferedReader stdin=new BufferedReader(new InputStreamB eader(Svstem in));
Svstem. out println("Enter the first number");

m=[nteger parselnt(stdin readLine()):

Swstem out println("Enter the second number ");
n=Integer parselnt(stdin readLine());
if (m%mn==0)
{
System out println("The first number is the multiple of second number”):
i

glse

{

System out println("The first number is not the multiple of second number");

}

¥ #End of main
+ AEnd of class Multiple

OUTPUT:

Enter the first number 10

Enter the second number 5

The first number is _the multiple of second number
Enter the first number 2

Enter the second number 3

The first number is not the multiple of second number

11

Assignment 24:
Objective - Write a java program to check given numbers in a sorting order.

ALGORITHNM:

. Start the program.
. Create a class and variables with data types.
. Read a string with DatainputstreamReader(System.in).
. convert the string into Integer.parseInt(stdin.readLine());
. Byusing for loop rotating the array.
. Print the concatenation of arrays.
Stop the program

[

o L

L=

PROGRAM:

import java.io.*:
class sorting

i
public static void main(String s[]) throws IOException
{
int a[J=new int[10]:
int ij;
DatalnputStream stdin=new Datalnputstream(Svstem.in):
Svstem out println("Enter 10 Elements into Arrav");
for(i=01=101++)
a[i]=Integer parselnt(stdin readLine()):
for(i=0;i<=9;i++)
for(j=04=9-1j++)
i
if (afj+1]=afi]D
i
int temp=afj+1]:
afi+1]=afil:
afj]Ftemp:
h

}

Swstem.out. println("Fequired Order is ");
for(i=0:i=101++)
Swstem. out printlndali]):;

¥

H
OUTPUT:

Enter 10 elements into Arrav:;10 987654321
Required orderis;] 23456 78910

12

Assignment 25:

Object : Write a java program to generate the Armstrong number.

ALGORITHNM:

1. Start the program.
Read a string with DatainputstreamR eader(System.in).
convert the string into Integer.parselnt(stdin.readLine()):
sum=sum-+r¥r*r formula.
Using if else statement.
Stop the program

k2

L

PROGRAM:

import javaio.*:
class armstrong

{
public static void main(String s[]) throws IOException
1

int n.r.temp, sum;
DatalnputStream stdin=new DatalnputStream(Svstem. in);
Svstem out println("Enter anvy Positive Integer Number :");
n=Integer parselnt(stdin.readLine{));
temp=n.
sum="0);
while(temp>={)

i

r—temp %o 10:

sum=sum-r*r*r;

temp=temp/10:

h
if (n==sum)

Swvstem_out println{"Given Number is Armstrong Number");
else

System out println{"Given Number is not Armstrong Number");
h
h

OUTPUT:
Enter anv positive Integer number: 133
Given number is Armstrong number.

Enter anv positive Integer number: 146
Given number is not Armstrong number.

13

Assignment 26:

Objective : Write a java program to generate the quadratic equation.
ALGORITHNM:

1. Start the program. Import the packages.
Create a class and variables with data types.
Declaration of the main class.
Read a string with inputstreamReader(System.in).
convert the string into Integer.parselnt(stdin.readLine());
Byusing if{d==0) “Roots are Equalent” loop rotating the integer value.
if{d=0) “Roots are Real” otherwise ("Roots are Imaginary");
Repeats enter the value until end of loop.
. End of class and main method.
0. Stop the program.

b

Lh = L

=10 0

PROGRAM:
import java.io.®;
import javamath. *:
class quadratic

{
public static void main(String s[]) throws [OException

{
int a.b.c.d:
double rl.r2:
BufferedF eader stdin=new BufferedR eader(new InputStreamR eader(Svstem.in));
Svstem. out println("Enter value of a:");
a=Integer parselnt(stdin readLine());
sSvstem out_println("Enter value of b:");
b=Integer parselnt(stdin readLine());
System. out println("Enter value of c:");
c=Integer parselnt(stdin readLine{));
d=b*b-4*a%c;
if(d==0)
{
Svstem. out println("Foots are Equalent™);
rl=-b/(2*a):
r2=-b/(2%a):
System. out println("Foot]l = "+rl);
System. out println("Foot2 = "+r2);

}

else if (d=0)
i
Swstem out println("Foots are Feal™);
rl=(-b+Math_sqre(d})(2*a):
r2=(-b-Math _sqrt(d))(2*a):
System. out println("Rootl = "+rl):

14

Swstem out println("Foot2 = "+r2);

}

glse
Svstem.out println("F.oots are Imaginary");

}

OUTPUT:

Enter value of a:1
Enter value of b2

Enter value of c:1
Roots are Equalent
Enter value of a:2
Enter value of b:3
Enter value of ¢:2
Roots are Imaginary

Assignment 27:

Object -To implement a calculator with its functionality.
ALGORITHM:

Start the program. Import the packages.

Create a class and variables with data types.
Declaration of the main class.

Read a string with inputstreamReader(System.in).
convert the string into Integer.parselnt(stdin.readLine()):
Byusing for loop rotating the integer value.
Repeats enter the value until end of loop.

End ofclass and main method.

Stop the program.

-

o

x>

15

PROGRAM:

import java.ic.DataInputStream;
class Cal

{

public static void main(String argsl[])
{
DataInputStream pt=new
DatalnputStream (System. in) ;
int x,v,2,ch;
try
{

System.out.println ("Enter Value of X:");

¥ = Integer.parselnt(pt.readLine()):;

System.out.println ("Enter Value of ¥:");

v = Integer.parselntipt.readlLine());

Syvstem.out.println("l.Addition Yn 2.Subtraction
\n 3. Multiplication \n 4.Division"™);

System.out.println ("Enter ur choice:");
ch = Integer.parseInt (pt.readLine ()) ;
switch (ch)

casg 1:
= = = + wr
Svstem.outb.println ("The Addition

ig:z"+=) -
break:s
casg 2:=

16

System.out.println ("The Subtraction is:"+z);

break;
casg 3:
z = =® * y;
System.out.println("The Multiplication

is:"+z);
break;
case 4:
z=x / vy;
Syvstem,.out.println ("The Division

is:"+z);
break:
default:
System.out.println("Sorry Try

Again..... ")
break;

catch (Exception)
{
System.out.println("x.getmessage () ") ;

}

OUTPUT:

= CAWINDOWS\system32\cmd.exe

D:=~javafile>javac Cal.java
Mote: Cal.java uszes or overrides a deprecated APIL.
Mote: Recompile with —deprecation for details.

D=~javafile>*java Cal
Enter Ualue of XH:

3

Enter Ualue of ¥:

4

1.Addition

2 _.Subtraction
3.Multiplication
4.Divizion

Enter ur choice:

3
The Multiplication is:=12

17

Assignment 28:

Object : To find the largest number of given numbers, by using arrays.
ALGORITHM:

1. Start the program. import the packages.

2. Create a class and variables with data types.
3. Read a string with inputstreamR eader(System.in).
4. convert the string into Integer.parselnt(stdin.readLine()):
5. Byusing for loop rotating the single dimensional arrays value.
6. Repeats enter the value until end of loop.
7. Printthe concatenation of string.
8. Stop the program.
PROGRAM:
import java.io.®; /Tmporting io package
import javalang.®; /Importing lang package
class Largest
{
public static void main{String args[]) throws [OException
{ int a[l= new int[10];
int 1j.k;

Svstem out println{"Enter the numbers of the arrav");
BufferedFeader stdin=new BufferedReader(new InputStreamP eader{Svstem.in));
for(i=0;i=10;i++)

{
a[il=Integer parselnt(stdin.readLine{})):
i
for(i=0:i=10:i++)
{
for(=G+1)3<105++)
i
Hfafi=aliD
k=al1]:
afil=afil:
afjl=k
} //End of if
H /End of inner forloop
t /End of outer forloop

Svstem out println{"The first largest number in the array is " + a[9]);

Svstem.out println{"The second largest number in the arrav is " + a[&]);
¥ //End of main

¥ /End of class Largest

18

OUTPUT:

Enter thenumbers of thearay 1 2 6 3 78 7 § 45 32 23

The first largest number in the arrav is 78

The second largest number in the array is 43

Enter thenumbers of thearray 12 23 34 45 36 67 68 78 89 100
The first largest number in the arrav is 100

The second largest number in the arrav is 89

Enter thenumbers of thearray 11 12 13 14 15 16 17 18 19 20
The first largest number in the array is 20

The second largest number in the array is 19

19

Viva Questions(object oriented programming)

1. What is the most important feature of Java?

Javais a platform independent language.

2. What do you mean by platform independence?

Platform independence means that we can write and compile the java
code in one platform (eg Windows) and can execute the class in any
other supported platform eg (Linux,Solaris,etc).

3. What is a JVM?

VM is Java Virtual Machine which is a run time environment for the
compiled java class files.

4. Are JZVM's platform independent?

JVM's are not platform independent. JVM's are platform specific run
time implementation provided by the vendor.

5. What is the difference between a JDK and a JVM?

JDK is Java Development Kit which is for development purpose and it
includes execution environment also. But JVM is purely a run time
environment and hence you will not be able to compile your source
files using a JVM.

6. What is a pointer and does Java support pointers?

Pointer is a reference handle to a memory location. Improper handling
of pointers leads to memory leaks and reliability issues hence Java
doesn't support the usage of pointers.

7. What is the base class of all classes?

java.lang.CObject

8. Does Java support multiple inheritance?

Java doesn't support multiple inheritance.

20

9. Is Java a pure object oriented language?

Java uses primitive data types and hence is not a pure object oriented
language.

10. Are arrays primitive data types?
In Java, Arrays are objects.
11. What is difference between Path and Classpath?

Path and Classpath are operating system level environment variales.
Path is used define where the system can find the executables(.exe)
files and classpath is used to specify the location .class files.

12. What are local variables?

Local varaiables are those which are declared within a block of code
like methods. Local variables should be initialised before accessing
them.

13. What are instance variables?

Instance variables are those which are defined at the class level.
Instance variables need not be initialized before using them as they
are automatically initialized to their default values.

14. How to define a constant variable in Java?

The variable should be declared as static and final. So only one
copy of the variable exists for all instances of the class and the value
can't be changed also.

static final int PT = 2.14; is an example for constant.

15. Should a main() method be compulsorily declared in all
java classes?

No not required. main () method should be defined only if the source
class is a java application.

16. What is the return type of the main() method?

Main () method doesn't return anything hence declared void.

21

17. Why is the main() method declared static?

main () method is called by the JVM even before the instantiation of
the class hence it is declared as static.

18. What is the arguement of main() method?
main () method accepts an array of String object as arguement.
19. Can a main() method be overloaded?

Yes. You can have any number of main () methods with different
method signature and implementation in the class.

20. Can a main() method be declared final?

Yes. Any inheriting class will not be able to have it's own
defaultmain () method.

21. Does the order of public and static declaration matter in

main() method?

No. It doesn't matter but void should always come beforemain() .

22. Can a source file contain more than one class declaration?

Yes a single source file can contain any number of Class declarations
but only one of the class can be declared as public.

23. What is a package?

Package is a collection of related classes and interfaces. package
declaration should be first statement in a java class.

24. Which package is imported by default?

java.lang package is imported by default even without a package
declaration.

25. Can a class declared as private be accessed outside |i's
package?

Not possible.

22

26. Can a class be declared as protected?

A class can't be declared as protected. gnly methods can be declared
ds protected.

27. What is the access scope of a protected method?

A protected method can be accessed by the classes within the same
package or by the subclasses of the class in any package.

28. What is the purpose of declaring a variable as final?

A final variable's value can't be changed. £inal variables should be
initialized before using them.

23

	7a40d76d6dff5968b17a7d8fd76d4cc96654d1e28b5681a80e98f65b0510b8de.pdf
	a51a66516fb6e79a5f9b76ea38b8d47210c6ee54068006e4d0898607baf36255.pdf
	7a40d76d6dff5968b17a7d8fd76d4cc96654d1e28b5681a80e98f65b0510b8de.pdf

